Distinct roles of Pcf11 zinc-binding domains in pre-mRNA 3′-end processing
نویسندگان
چکیده
New transcripts generated by RNA polymerase II (RNAPII) are generally processed in order to form mature mRNAs. Two key processing steps include a precise cleavage within the 3' end of the pre-mRNA, and the subsequent polymerization of adenosines to produce the poly(A) tail. In yeast, these two functions are performed by a large multi-subunit complex that includes the Cleavage Factor IA (CF IA). The four proteins Pcf11, Clp1, Rna14 and Rna15 constitute the yeast CF IA, and of these, Pcf11 is structurally the least characterized. Here, we provide evidence for the binding of two Zn2+ atoms to Pcf11, bound to separate zinc-binding domains located on each side of the Clp1 recognition region. Additional structural characterization of the second zinc-binding domain shows that it forms an unusual zinc finger fold. We further demonstrate that the two domains are not mandatory for CF IA assembly nor RNA polymerase II transcription termination, but are rather involved to different extents in the pre-mRNA 3'-end processing mechanism. Our data thus contribute to a more complete understanding of the architecture and function of Pcf11 and its role within the yeast CF IA complex.
منابع مشابه
Distinct roles of two Yth1p domains in 3'-end cleavage and polyadenylation of yeast pre-mRNAs.
Yth1p is the yeast homologue of the 30 kDa subunit of mammalian cleavage and polyadenylation specificity factor (CPSF). The protein is part of the cleavage and polyadenylation factor CPF, which includes cleavage factor II (CF II) and polyadenylation factor I (PF I), and is required for both steps in pre-mRNA 3'-end processing. Yth1p is an RNA-binding protein that was previously shown to be esse...
متن کاملThe interaction of Pcf11 and Clp1 is needed for mRNA 3′-end formation and is modulated by amino acids in the ATP-binding site
Polyadenylation of eukaryotic mRNAs contributes to stability, transport and translation, and is catalyzed by a large complex of conserved proteins. The Pcf11 subunit of the yeast CF IA factor functions as a scaffold for the processing machinery during the termination and polyadenylation of transcripts. Its partner, Clp1, is needed for mRNA processing, but its precise molecular role has remained...
متن کاملCTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo
Co-transcriptional pre-mRNA processing relies on reversible phosphorylation of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNAP II). In this study, we replaced in live cells the endogenous Rpb1 by S2A Rpb1, where the second serines (Ser2) in the CTD heptapeptide repeats were switched to alanines, to prevent phosphorylation. Although slower, S2A RNAP II ...
متن کاملThe P-Loop Domain of Yeast Clp1 Mediates Interactions Between CF IA and CPF Factors in Pre-mRNA 3′ End Formation
Cleavage factor IA (CF IA), cleavage and polyadenylation factor (CPF), constitute major protein complexes required for pre-mRNA 3' end formation in yeast. The Clp1 protein associates with Pcf11, Rna15 and Rna14 in CF IA but its functional role remained unclear. Clp1 carries an evolutionarily conserved P-loop motif that was previously shown to bind ATP. Interestingly, human and archaean Clp1 hom...
متن کاملStructure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor
Pcf11 and Clp1 are subunits of cleavage factor IA (CFIA), an essential polyadenylation factor in Saccahromyces cerevisiae. We have determined the structure of a ternary complex of Clp1 together with ATP and the Clp1-binding region of Pcf11. Clp1 contains three domains, a small N-terminal beta sandwich domain, a C-terminal domain containing a novel alpha/beta-fold and a central domain that binds...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 45 شماره
صفحات -
تاریخ انتشار 2017